x^2+16=12(12+x)

Simple and best practice solution for x^2+16=12(12+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+16=12(12+x) equation:



x^2+16=12(12+x)
We move all terms to the left:
x^2+16-(12(12+x))=0
We add all the numbers together, and all the variables
x^2-(12(x+12))+16=0
We calculate terms in parentheses: -(12(x+12)), so:
12(x+12)
We multiply parentheses
12x+144
Back to the equation:
-(12x+144)
We get rid of parentheses
x^2-12x-144+16=0
We add all the numbers together, and all the variables
x^2-12x-128=0
a = 1; b = -12; c = -128;
Δ = b2-4ac
Δ = -122-4·1·(-128)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{41}}{2*1}=\frac{12-4\sqrt{41}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{41}}{2*1}=\frac{12+4\sqrt{41}}{2} $

See similar equations:

| 5(x=4)=3x+14 | | 58x-13=512 | | 7(x+70)=-77 | | 2b+13=19 | | 12=48x | | 66(x+2)=90 | | 16x+14=x+59 | | p-(-24/(-1/2)=0 | | 144=10(10+x) | | 39=7x−3 | | 6x-10=10x+22* | | -2/5x-7/20x+1/4x=40 | | 13x+14=7x+32 | | 2b+13=19 | | 40=2x+2*8 | | 9(x+2)+2=32 | | 5(5+x)=49 | | I-3xI=36 | | 24-3z=z | | 3(x+5)+2(x+10)=-20 | | 4(3x+5=44 | | 5(5*x)=49 | | x(x+12)=28 | | -8x+5x=x+3x-4 | | p=-24/(-1/2) | | -47x-14=37 | | y=4-1,2 | | -1(x-8)=4x+23 | | -2(x+6)-1=-3 | | 0=(-2t^2+1) | | -8+5/6y=-28 | | -3x-9=−3x−9=x-1x−1 |

Equations solver categories